Pada tulisan ini saya akan membagikan sidikit ilmu yang saya dapat tentang bagaimana cara menghitung determinan matriks. Metode yang digunakan adalah menggunakan Ekspansi Kofaktor. Metode ini tidak hanya digunakan untuk menghitung determinan matriks atau tapi digunakan untuk matriks yang berordo lebih besar lagi seperti, dan seterusnya. Untuk menghitung determinan menggunakan metode ini, rumusnya dijamin oleh Teorema berikut. Teorema 1. Determinan matriks yang berukuran dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap dan , maka detA = a1jC1j + a2jC2j + … + anjCnj ekspansi kofaktor sepanjang kolom ke-j atau detA = ai1Ci1 + ai2Ci2 + … + ainCin ekspansi kofaktor sepanjang baris ke-i Untuk lebih memperjelas apa itu kofaktor, perhatikan Definisi dibawah ini. Definisi 2. Jika A adalah matriks kuadrat, maka minor entri aij dinyatakan oleh Mij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Bilangan -1i+jMij dinyatakan oleh Cij dan dinamakan kofaktor entri aij. Contoh 3. Misalkan kita punya matriks A = . Tentukan minor entri a11, a12, dan a13. Tentukan juga kofaktor entri M11, M12 dan M13 ! Penyelesaian. minor entri a11 adalah M11 = = = 58 – 46 = 16 kofaktor a11 adalah C11 = -11+1M11 = -1216 = 16 minor entri a12 adalah M12 = = = 28 – 16 = 10 kofaktor a12 adalah C12 = -11+2M12 = -1310 = -10 minor entri a13 adalah M13 = = = 24 – 15 = 3 kofaktor a13 adalah C13 = -11+3M13 = -143 = 3 Contoh 4. Dari Contoh 1 diatas, tentukan determinan matriks A Penyelesaian. Menggunakan yang diberikan pada Teorema diatas dengan mengambil i = 1 dan j = 1, 2, dan 3, maka diperoleh. detA = a11C11 + a12C12 + a13C13 = 316 + 1-10 + -43 = 48 – 10 – 12 = 26 Contoh 5. Tentukan determinan matriks A = Penyelesaian. Menggunakan yang diberikan pada Teorema diatas dengan mengambil i = 3 dan j = 1, 2, dan 3, maka diperoleh. detA = = a31C31 + a32C32 + a33C33 = a31-13+1M31 + a32-13+2M31 + a33-13+3M31 = a31M31 – a32M31 + a33M31 = 3 – 2 + 2 = 3[68-06] – 2[08-80] + 2[06-86] = 144 – 0 – 96 = 48 atau jika ingin lebih cepat, kita bisa melihat entri yang mengandung nol agar lebih mempersingkat waktu mengerjakan. Karena dalam baris pertama terdapat dua entri nol, maka i = 1 dan j = 1, 2, 3 kemudian gunakan rumus. detA = a11C11 + a12C12 + a13C13 = a11-11+1M11 + a12-11+2M12 + a13-11+3M13 = a11M11 – a12M12 + a13M13 = 0 – 6 + 0 = 0 – 6[82-83] + 0 = 48 Contoh 6. Tentukan determinan matriks B = Penyelesaian. dengan menggunakan kolom pertama pada matriks B sebagai kofaktor dan berdasarkan Teorema diatas dengan mengambil i = 1, 2, 3, 4 dan j = 1 maka diperoleh. detB = = a11C11 + a21C21 + a31C31 + a41C41 = a11-11+1M11 + a21-12+1M21 + a31-13+1M31 + a41-14+1M41 = a11M11 – a21M21 + a31M31 – a41M41 = 2 – 1 + 0 – 0 hitung lagi determinan untuk matriks 3×3 nya = 2[ambil i = 1 dan j = 1, 2, 3] – 1[ambil i = 1, 2, 3 dan j = 3] {untuk matriks ketiga dan keempat tidak perlu dihitung karena koefesiennya 0, sehingga apabila dikali, hasilnya akan tetap = 0} = 2[a11C11 + a12C12 + a13C13] – 1[a13C13 + a23C23 + a33C33] + 0 – 0 = 2[a11-11+1M11 + a12-11+2M12 + a13-11+3M13] – 1[a13-11+3M13 + a23-12+3M23 + a33-13+3M33] = 2[a11M11 – a12M12 + a13M13] – 1[a13M13 + a23M23 + a33M33] = 20 – 1 + 1 – 11 – 0 + 3 = 20[13-20] – 1[23-10] + 1[22-11] – 11[22-11] – 0[12-13] + 3[11-23] = 20 – 6 + 3 – 13 – 0 + 3-5 = -6 + 12 = 6 Contoh 7. Tentukan determinan matriks Penyelesaian. Selanjutnya, Karena dan merupakan determinan , maka kita uraikan lagi dengan menggunakan kofaktor. Ambil dan . Dengan menggunkaan Metode Sarrus, diperoleh Dengan menggunkaan Metode Sarrus, diperoleh Dengan menggunkaan Metode Sarrus, diperoleh Dengan menggunkaan Metode Sarrus, diperoleh Dengan menggunkaan Metode Sarrus, diperoleh Jadi, diperoleh Sumber Anton, H., 1992, Aljabar Linier Elementer, Erlangga, Jakarta.
Ada2 metode baru untuk menghitung determinan matriks. berukuran × . Metode pertama adalah menghitung determinan matriks × ( ≥ 5) dengan. mereduksi ordo menjadi ( − 4) × ( − 4) dimana entri dari baris ke-2 dan baris − 1 serta. kolom ke-2 dan kolom − 1adalah nol, kecuali entri pertama dan terakhirnya. Metode pertama. Uploaded byShiva Chairunnisa 100% found this document useful 1 vote3K views7 pagesCopyright© © All Rights ReservedShare this documentDid you find this document useful?Is this content inappropriate?Report this Document100% found this document useful 1 vote3K views7 pagesDeterminan Matriks Ordo 4x4 Menggunakan Ekspansi KofaktorUploaded byShiva Chairunnisa Full descriptionJump to Page You are on page 1of 7Search inside document You're Reading a Free Preview Pages 4 to 6 are not shown in this preview. Buy the Full Version Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime. Determinan(lanjutan) Riri Irawati, M.Kom 3 sks * * * Agenda Minor - kofaktor Menghitung determinan 4x4 dengan metode Laplace Adjoint Tujuan Instruksional Secara Umum Mahasiswa dapat menguasai teorema Laplace. Secara Khusus Mahasiswa dapat menghitung determinan matriks berbagai ukuran. Aljabar Linear » Matriks › Menghitung Determinan Matriks Menggunakan Metode Ekspansi Kofaktor Matriks Pada artikel ini, kita akan membahas cara lain untuk memperoleh determinan suatu matriks yakni dengan menggunakan metode ekspansi kofaktor. Oleh Tju Ji Long Statistisi Kita telah mempelajari dua cara menghitung determinan matriks. Pertama dengan menggunakan metode Sorrus dan kedua dengan menggunakan operasi baris elementer. Pada artikel ini, kita akan membahas cara lain untuk memperoleh determinan suatu matriks yakni dengan menggunakan metode ekspansi kofaktor. Ada dua istilah yang perlu dipahami terlebih dahulu yakni minor entri dan kofaktor entri. Kita definisikan sebagai berikut. Definisi Jika \A\ adalah matriks kuadrat dengan entri atau elemennya \a_{ij}\, maka yang disebut minor entri \a_{ij}\ atau dinotasikan dengan \M_{ij}\ adalah determinan submatriks setelah baris ke \i\ dan kolom ke \j\ dicoret dari \A\. Bilangan \-1^{i + j} M_{ij}\ yang dinotasikan dengan \C_{ij}\ dinamakan kofaktor entri \a_{ij}\. Untuk lebih jelasnya, perhatikan beberapa contoh soal berikut. Contoh 1 Misalkan terdapat matriks berikut. Tentukan minor entri dan kofaktor dari \a_{11}\ dan \a_{32}\. Pembahasan Dari definisi yang diberikan di atas, maka minor entri \a_{11}\ adalah Perhatikan bahwa di sini kita mencoret baris dan kolom pertama dari matriks A sehingga diperoleh submatriks baru berukuran 2 x 2. Determinan dari submatriks yang diperoleh disebut minor entri \a_{11}\. Dengan demikian, kofaktor \a_{11}\ yaitu Hal yang sama dapat kita lakukan untuk mencari minor entri \a_{32}\, yakni dan kofaktor \a_{32}\ yaitu Perhatikan bahwa kofaktor dan minor elemen \a_{ij}\ hanya berbeda dalam tandanya, yakni, \C_{ij} = ±M_{ij}\. Cara cepat untuk menentukan penggunaan tanda + atau tanda – berasal dari kenyataan bahwa penggunaan tanda yang menghubungkan \C_{ij}\ dan \M_{ij}\ berada dalam baris ke \i\ dan kolom ke \j\ dari susunan Misalnya, \C_{21} = -M_{21}\, \C_{12} = -M_{12}, C_{22} = M_{22}\, dan seterusnya. Sekarang kita akan mengaitkan apa yang telah kita pelajari di atas mengenai minor entri dan kofaktor entri dengan pencarian determinan suatu matriks. Misalkan diketahui matriks A berukuran \3 × 3\ sebagai berikut \[ A = \left[ {\begin{array}{cc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} } \right] \] Kita tahu bahwa determinan dari matriks A dapat ditentukan dengan Rumus Sorrus, yakni yang mana dapat dituliskan kembali sebagai Karena pernyataan-pernyataan dalam kurung tak lain adalah kofaktor-kofaktor \C_{11}, C_{21}\, dan \C_{31}\, maka kita peroleh 1 Persamaan 1 memperlihatkan bahwa determinan A dapat dihitung dengan mengalikan entri-entri dalam kolom pertama A dengan kofaktor-kofaktornya dan kemudian menjumlahkan hasil kalinya. Metode menghitung detA ini dinamakan ekspansi kofaktor sepanjang kolom pertama A. Contoh 2 Menghitung Determinan Misalkan diketahui matriks A sebagai berikut. Hitunglah \\detA\ dengan metode ekspansi kofaktor sepanjang kolom pertama A. Pembahasan Dari persamaan 1 diperoleh Dengan cara yang sama seperti kita lakukan untuk memperoleh persamaan 1, determinan matriks A dapat dihitung dengan rumus berikut 2 Perhatikan bahwa dalam setiap persamaan semua entri-entri dan kofaktor berasal dari baris atau dari kolom yang sama. Persamaan ini dinamakan ekspansi-ekspansi kofaktor \\detA\. Hasil-hasil yang baru saja kita berikan untuk matriks \3×3\ membentuk kasus khusus dari teorema umum berikut Teorema Determinan matriks \A\ yang berukuran \n × n\ dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan; yakni, untuk setiap \1≤i≤n\ dan \1≤j≤n\, maka dan Contoh 3 Menghitung Determinan Tinjaulah matriks A berikut. Hitunglah detA dengan menggunakan ekspansi kofaktor sepanjang baris pertama. Pembahasan Dari persamaan 2 baris kedua diperoleh Ini sesuai dengn hasil yang kita peroleh pada contoh kita sebelumnya. Pada contoh ini kita tak perlu menghitung kofaktor akhir, karena kofaktor tersebut dikalikan oleh nol. Umumnya, strategi terbaik untuk menghitung determinan dengan menggunakan ekpansi kofaktor adalah dengan mengekspansikannya sepanjang baris atau kolom yang mempunyai bilangan nol yang terbanyak. Ekspansi kofaktor dan operasi baris atau operasi kolom kadang-kadang dapat digunakan bersama-sama untuk memberikan metode yang efektif untuk menghitung determinan. Contoh berikut melukiskan gagasan ini. Contoh 4 Menghitung Determinan Hitunglah \\detA\ di mana Pembahasan Dengan menambahkan perkalian yang sesuai dari baris kedua pada baris selebihnya, kita dapatkan Sumber Anton, Howard & Chris Rorres. 2014. Elementary linear algebra applications version, 11th edition. John Wiley & Sons, Inc Hoboken, New Jersey. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.Determinanmatriks A A yang berukuran n×n n × n dapat dihitung dengan mengalikan entri-entri dalam suatu baris (atau kolom) dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan; yakni, untuk setiap 1 ≤ i ≤ n 1 ≤ i ≤ n dan 1 ≤ j ≤ n 1 ≤ j ≤ n, maka dan Contoh 3: Menghitung Determinan Tinjaulah matriks A berikut.
13+ Contoh Soal Determinan Matriks Ordo 4X4 Metode Kofaktor 13+ Contoh Soal Determinan Matriks Ordo 4X4 Metode Kofaktor. Metode obe 4x4 metode sarrus 4x4 metode kofaktor 4x4 metode obe pdf yang dibahas kali ini berkaitan merubah matriks menjadi matriks segitiga atas, kemudian determinan diperoleh dari perkalian elemen diagonal utama. Jadi, cuma artikel versi pdf ini yang saya bagikan. Kumpulan Contoh Soal Contoh Soal Determinan Matriks 4x4 from Dua buah matriks dapat dijumlahkan atau dikurangi jika memiliki ordo yang sama. Menentukan kebalikan dari matriks di. Matriks a dikenal sebagai berikut Hitunglah dan tentukan berapa nilai determinan dari sebuah matrik berikut pembahasan Tentukan nilai x yang memenuhui persamaan tersebut! Davesebuah metode untuk menghitung determinan matriks 2x2. Tampak bahwa det a matriks ordo 3 × 3 yang diselesaikan dengan cara minor kofaktor hasilnya sama dengan det a menggunakan cara sarrus. Blog sederhana untuk belajar matematika online, referensi untuk ujian nasional dan uas. Misalkan matriks a memiliki ordo 3 x 4 dan matriks b memiliki ordo 4 x 2, maka matriks c memiliki ordo 3 x 2. Tentukan nilai x yang memenuhui persamaan tersebut! Blog sederhana untuk belajar matematika online, referensi untuk ujian nasional dan uas. Postingan populer dari blog ini 14+ Contoh Soal Dan Pembahasan Limit Fungsi Trigonometri Kelas 12 14+ Contoh Soal Dan Pembahasan Limit Fungsi Trigonometri Kelas 12 . Sekian kumpulan soal limit fungsi trigonometri disertai dengan pembahasannya. Penyajian rumus/simbol matematika di sini menggunakan. Kumpulan Contoh Soal Contoh Soal Limit Fungsi ... from Limit fungsi aljabar materi rumus metode contoh soal. Jika seandainya hasil yang diperoleh adalah bentuk tidak tentu, baru dilanjutkan dengan model penyelesaian lain seperti Mari kita pelajari dengan seksama penjelasan. Download buku matematika peminatan kelas xii kelas 12 kurikulum 2013 revisi. Posted in matematikatagged aturan limit trigonometri, limit fungsi trigonometri kelas 12, limit. Contoh soal limit fungsi aljabar 4 Posted in matematikatagged aturan limit trigonometri, limit fungsi trigonometri kelas 12, limit. Soal latihan trigonometri jumlah dan selisih dua sudut. 120 limit fungsi trigono Contoh Soal Aljabar Linear Dan Penyelesaiannya Kedua variabel tersebut memiliki derajat satu berpangkat satu. Contoh soal aljabar hai guys apa kamu siswa kelas 7. Buku Ajar Aljabar Linear Source Persamaan Linear 1 2 3 4 Variabel Matematika Contoh Soal Jawaban Source Contoh Soal Aljabar Linier Terupdate Source Contoh Soal Aljabar Boolean Sop Dan Pos Jika suatu fungsi boolean memuat n peubah maka banyaknya baris dalam tabel kebenaran ada 2 n. Dua tipe bentuk baku adalah bentuk baku sop dan bentuk baku pos. Memahami Fungsi Boolean Bentuk Kanonik Dan Bentuk Baku Pada Source Ppt Aljabar Boole Powerpoint Presentation Free Download Id Source Bab 4 Penyederhanaan Fungsi Boolean Suatu Fungsi BooeJadi nilai determinan dari matriks ordo 3 x 3 di atas ialah = – 56. Baca Juga: Jenis Jenis Banjir - Pengertian , Penjelasan, Penyebabnya , Dampak, Antisipasi Banjir dan Banjir Terparah di Dunia dan Indonesia Penelusuran yang terkait dengan Determinan Matriks. determinan matriks 2x2; determinan matriks 4x4; sifat determinan matriks
Denganmetode ini, kita sanggup memilih tidak hanya determinan matriks ordo 2×2 atau 3×3 tapi dipakai untuk matriks yang berordo lebih besar lagi seperti, 4×4, 5×5 dan seterusnya. Namun, apa bekerjsama kofaktor tersebut? Jika kita berbicara kofaktor tentu tidak terlepas dari yang namanya minor.
ContohSoal Determinan Matriks Ordo 4x4 Metode Kofaktor Terbaru 2019 from paling mudah adalah dengan metode sarrus determinan berdasarkan gambar di atas: Terdapat beberapa metode yang digunakan untuk menentukan determinan matriks yaitu metode sarrus , ekspansi kofaktor , dan kondensasi (penyusutan) chio. Perkalian Langkahyang kedua, kita harus mencari kofaktor matriks pada bagian matriks A (C ij).Cij = (-1) i+j M ij dan M ij = det A ij dengan A ij merupakan matriks bagian dari matriks A yang diperoleh dengan menghilangkan baris ke-i dan kolom ke-j. Sebelumnya, kita telah memilih elemen-elemen pada baris ke-1, yaitu a 11, a 12, dan a 13.Oleh karena itu, matriks bagian dari .